Comparison of Posterior Rod Strain of Traditional Four-Rod Inline and Novel Ames-Deviren-Gupta Four-Rod Techniques in Pedicle Subtraction Osteotomies for Adult Spinal Deformity Correction: An In Silica Study

Ehsan Jazini, MD,a Daniel E. Gelb, MD,b Jarid Tareen, MD,b Steven C. Ludwig, MD,b Jonathan A. Harris, MS,c Wenhai Wang, PhD,c Brandon S. Bucklen, PhDc

a Department of Orthopedic, Medstar Georgetown University Hospital, Washington DC, USA
b Department of Orthopedics, University of Maryland, School of Medicine, Baltimore, MD, USA
c Musculoskeletal Education and Research Center, A Division of Globus Medical Inc., Audubon, PA, USA
Disclosures

DEG: consulting fee from DePuy Synthes Spine (paid consultant, royalties); AOSpine North America (paid lectures); Globus Medical (royalties)

SCL: AO Spine North America Spine Fellowship Support (Research support); ASIP, ISD (Stock or stock options); Cervical Spine Research Society (Board or committee member); DePuy, A Johnson & Johnson Company (IP royalties; Paid consultant; Paid presenter or speaker); Globus Medical (Paid consultant; Research support); Journal of Spinal Disorders and Techniques, The Spine Journal, Contemporary Spine Surgery (Editorial or governing board); K2Medical (Paid consultant, Research support); Synthes (Paid consultant; Paid presenter or speaker); Thieme, QMP (Publishing royalties, financial or material support).

JAH, WW, BSB: salaried researchers at MERC, Musculoskeletal Education and Research Center, a division of Globus Medical, Inc.

EJ, JT, BJF: Nothing to disclose
Background

• PSO associated with high revision rates due to rod fractures at the PSO level
 – Rod fracture rates as high as 22% [1]

• Multi-rod constructs aim to alleviate strain on rod [2]
 – Traditional 4-rod reconstruction has short accessory rods affixed via rod-to-rod, *inline* with primary rods
 – Technique still requires extensive rod contouring

• Ames-Deviren-Gupta (ADG) propose alternative 4-rod technique [1,3]
 – Short accessory rod spans PSO
 – Long primary rod placed *dorsal* to accessory rod connects to remaining screws
 – Technique does not require sharp bending of primary rods and may reduce rod fracture

• Comparisons between these techniques have not been published to the author’s knowledge

Novel ADG 4-rod technique with short accessory rods spanning the PSO level, and longer primary rods connecting adjacent screw [1]
Purpose

- Investigate reductions in rod strain of two 4-rod techniques, thus explaining the reduced rates of rod fracture seen clinically following PSO
Methods

Validation

• In Silica model (T12-S)
 – Bone/discs meshed using solid elements
 – Collagen fibers modeled as springs
 – Ligaments modeled as tension-only spring elements
 – Facet joints assumed to be frictionless

• Model validated with cadaveric range of motion (n=6)
 – Conditions:
 • 10Nm at T12
 • S1 fixed
 – Planes of Motion
 • Flexion-Extension (FE)
 • Lateral bending (LB)
 • Axial Rotation (AR)
Methods

Reconstruction

• PSO simulated at L3
 – Lumbar lordosis = 70°
 – Construct Materials
 • Titanium rods/screws at L1-S1
 • [E =113.8 GPa]

• 4-Rod Inline Construct (Fig A)
 • Short accessory rod affixed to longer primary rod across PSO
 • Domino rod-to-rod connectors

• 4-Rod AGD Construct (Fig B)
 • Accessory rods affixed to L2-L4
 • Primary rod affixed to L1, L5-S1

(A) 4-rod Inline and (B) 4-rod AGD techniques
Methods

Simulation

• Conditions
 – Flexion-extension
 – 10Nm applied at T12
 – S1 fixed

• Motion-induced surface strain measured
 – Location:
 • Primary rod strain at PSO and lumbosacral junction
 • S1 screw strain
 – Averaged to Ti 2-rod (control)

Examples of (A) surface strain; (B) 4-rod construct strain; (C) screw strain
Results: Primary Rod Contouring

- Novel Ames-Deviren-Gupta short rod technique proposed in literature [1,3]
 - Short accessory rod spans PSO
 - Long primary rod placed *dorsal* to accessory rod connects to remaining screws
 - Technique does not require sharp bending of primary rods, and may reduce rod fracture

- Simulated model had 70° of lumbar lordosis following PSO

- Primary rod contour angle
 - 4-rod Inline = 129.7°
 - 4-rod ADG = 115.5°
Results: Posterior Rod Strain Patterns

- Position of the accessory rod affects region of maximum strain on rod
 - 4-rod Inline
 - Interface of rod-2-rod domino connector
 - 4-rod ADG
 - Apex of rod bend just superior to L4
Results: Primary and Accessory Rod Strain

Surface Rod Strain at PSO Normalized to Ti 2-Rod

<table>
<thead>
<tr>
<th></th>
<th>Normalized Rod Strain (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PSO Primary Rod</td>
</tr>
<tr>
<td>4-Rod Inline</td>
<td>48.8</td>
</tr>
<tr>
<td>4-Rod AGD</td>
<td>77.1</td>
</tr>
</tbody>
</table>
Discussion

• Both 4-rod techniques reduced mechanical demand along the rods at the PSO and lumbosacral junction
 – Novel 4-rod ADG reconstruction shifts region of maximum strain distally

• The 4-rod Inline technique observed greater strain reduction on the primary rod at the PSO than 4-rod ADG reconstruction
 – Inline: 48.8% vs. ADG: 77.1%

• Inline reconstruction transferred strain to accessory rod and lumbosacral junction
 – Primary rod: 48.8% vs. Accessory rod: 58.7%
 – PSO: 48.8% vs. L5-S1: 84.8%

• Results suggest loss of bony fixation points along primary rod, inherent to ADG technique, make the technique less effective in reducing primary rod strain
References

